Home
Class 11
MATHS
The product of roots of the equation (lo...

The product of roots of the equation `(log_8(8/x^2))/((log_8x)^2)=3` is 1 (b) (c) 1/3 (d) `1//4`

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of roots of the equation (log)_(3sqrt("x"))x+(log)_(3x)sqrt(x)=0 is 1 (b) 2 (c) 3 (d) 0

The number of elements in set of all x satisfying the equation x^(log_3x^2+(log_3x)^2-10)=1/(x^2)i s (a)1 (b) 2 (c) 3 (d) 0

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

The value of x for which the equation 5*3^(log_3x)-2^(1-log_2x)-3=0

Let a >1 be a real number. Then the number of roots equation a^(2(log)_2x)=15+4x^((log)_2a) is 2 (b) infinite (c) 0 (d) 1

For a >0,!=1, the roots of the equation (log)_(a x)a+(log)_x a^2+(log)_(a^2a)a^3=0 are given a^(-4/3) (b) a^(-3/4) (c) a (d) a^(-1/2)

The real solutions of the equation 2^(x+2). 5^(6-x)=10^x^2 is/are 1 (b) 2 (c) (log)_(10)(250) (d) (log)_(10)4-3

The number of solution of x^(log)x(x+3)^2=16 is a)0 (b) 1 (c) 2 (d) oo

Solve (log)_2(3x-2)=(log)_(1/2)x

The value of x satisfying the equation 3sqrt(5)^((log_5) 5^(((log)_5(log)_5log_5(x/2))) = 3 1 (b) 3 (c) 18 (d) 54