Home
Class 11
MATHS
In A B C ,A=(2pi)/3,b-c=3sqrt(3)c m and...

In ` A B C ,A=(2pi)/3,b-c=3sqrt(3)c m` and area of ` A B C=(9sqrt(3))/2c m^2,t h e n (a) `9c m` (b) `18 c m` (c) `27 c m`

Promotional Banner

Similar Questions

Explore conceptually related problems

In A Delta ABC if ( sqrt(3)-1)a=2b, A=3B then c is

If vec a , vec b ,a n d vec c are such that [ vec a vec b vec c]=1, vec c=lambda vec axx vec b , angle, between vec aa n d vec b is (2pi)/3,| vec a|=sqrt(2),| vec b|=sqrt(3)a n d| vec c|=1/(sqrt(3)) , then the angel between vec aa n d vec b is a. pi/6 b. pi/4 c. pi/3 d. pi/2

Given b=2,c=sqrt(3),/_A=30^0 , then inradius of A B C is (sqrt(3)-1)/2 (b) (sqrt(3)+1)/2 (c) (sqrt(3)-1)/4 (d) non eoft h e s e

In A B C ,= if (a+b+c)(a-b+c)=3a c , then find /_Bdot

In triangle A B C , if sinAcosB=1/4 and 3t a n A=t a n B ,t h e ncot^2A is equal to (a)2 (b) 3 (c) 4 (d) 5.

The three sides of a trapezium are equal, each being 8cm. The area of the trapezium, where it is maximum, is (a) 24sqrt(3) c m^2 (b) 48sqrt(3)c m^2 (c)72 sqrt(3)c m^2 (d) none of these

In triangle A B C , Medians A D and C E are drawn. If A D=5,/_D A C=pi/8,a n d/_A C E=pi/4 , then the area of the triangle A B C is equal to (25)/9 (b) (25)/3 (c) (25)/(18) (d) (10)/3

If x=m x+c touches the parabola y^2=4a(x+a), then (a) c=a/m (b) c=a m+a/m (c) c=a+a/m (d) none of these

Let vec a=2i+j-2ka n d vec b=i+jdot If vec c is a vector such that vec adot vec c=| vec c|,| vec c- vec a|=2sqrt(2) between vec axx vec b and vec ci s30^0,t h e n|( vec axx vec b)xx vec c| I equal to a. 2//3 b. 3//2"" c. 2 d. 3

If a ,b ,c in R^+ , then the minimum value of a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2) is equal to (a) a b c (b) 2a b c (c) 3a b c (d) 6a b c