Home
Class 11
MATHS
Let A,B,C, be three angles such that A=p...

Let A,B,C, be three angles such that `A=pi/4` and `tanB tanC=pdot` Find all possible values of `p` such that `A , B ,C` are the angles of a triangle.

Text Solution

Verified by Experts

`A+B+C=pi`
`B+c=pi-pi/4`
`B+C=3/4pi`
`0<=B,C<=3/4pi`
`tanB*tanC=P`
`sinB/cosB*sinC/cosC=P/1`
`(sinBsinC+cosBcosC)/(sinBsinC-cosBcosC)=(P+1)/(P-1)`
`(cos(B-C))/(-cos(B+C))=(P+1)/(P-1)`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A , B , C be the three angles such that A+B+C=pi . If T a nAtanB=2, then find the value of (cosA.cosB)/(cos c)

In A B C , if /_A=pi/4, then find all possible values of tanBtanCdot

Let a,b,c,d be real numbers such that |a-b|=2, |b-c|=3, |c-d|=4 Then the sum of all possible values of |a-d|=

In a triangle A B CifB C=1a n dA C=2, then what is the maximum possible value of angle A ?

If A, B, C are the angles of a triangle such that sin^(2)A+sin^(2)B=sin^(2)C , then

If A,B,C are the angles of a non right angled triangle ABC. Then find the value of: |[tanA,1,1],[1,tanB,1],[1,1,tanC]|

If three positive real numbers a, b, c are in A.P and abc = 4 , then the minimum possible value of b is

Let a ,b and c be real numbers such that a+2b+c=4 . Find the maximum value of (a b+b c+c a)dot

If A,B,C, are the angles of a triangle such that cotA/2=3tanC/2, then sinA ,sinB ,sinC are in AdotPdot (b) GdotPdot (c) HdotPdot (d) none of these

Let A(0,beta), B(-2,0) and C(1,1) be the vertices of a triangle. Then All the values of beta for which angle A of triangle ABC is largest lie in the interval