Home
Class 11
MATHS
In a triangle ABC , a =2,b=3 and sin ...

In a triangle ABC `, a =2,b=3 and sin A = (2)/(3)` then cos C=

Promotional Banner

Similar Questions

Explore conceptually related problems

If in a triangle ABC , a=15 , b= 36 , c = 39 then sin"" (C )/(2) =

If in a triangle ABC, (bc)/(2 cos A) = b^(2) + c^(2) - 2bc cos A then prove that the triangle must be isosceless

in a triangle ABC , (b+c) ( bc ) cos A + (a +c) (ac) cos B + ( a+b) (ab) cos C Is

In a triangle ABC, if sin A sin(B-C)=sinC sin(A-B) , then prove that cos 2A,cos2B and cos 2C are in AP.

In a triangle ABC , if cos A cos B + sin A sin B sin C = 1 , then a:b:c is equal to

In triangle ABC , a (b^2 +c^2 ) cos A + b (c^2 +a^2 ) cos B + c(a^2 +b^2 ) cos C is equal to

In a triangle ABC, sin^(2)A + sin^(2)B + sin^(2)C = 2 , then the triangle is

in a triangle ABC , ( cos A)/(a) = (cos B )/( b) = ( cos C )/( c ) if a=(1 )/( sqrt(6)) then the area of the triangle ( in square units ) is

In a triangle ABC , (c^2 +a^2 -b^2)/(2ca) is: