Home
Class 11
MATHS
The sides of A B C satisfy the equation...

The sides of ` A B C` satisfy the equation `2a^2+4b^2+c^2=4a b+2a cdot` Then the triangle a)isosceles the triangle b)obtuse c)`B=cos^(-1)(7/8)` d) `A=cos^(-1)(1/4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The sides of triangle ABC satisfy the relations a + b - c= 2 and 2ab -c^(2) =4 , then the square of the area of triangle is ______

If the sines of the angles A and B of a triangle ABC satisfy the equation c^2x^2-c(a+b)x+a b=0 , then the triangle a)acute angled b)right angled c)obtuse angled d) sinA+cosA = ((a+b))/c

The area of a triangle A B C is equal to (a^2+b^2-c^2) , where a, b and c are the sides of the triangle. The value of tan C equals

If cos^(2)A+cos^(2)B+cos^(2)C=1 , then triangle ABC is

If sinA=sin^2Ba n d2cos^2A=3cos^2B then the triangle A B C is right angled (b) obtuse angled (c)isosceles (d) equilateral

If in a triangle a cos^2C/2+ c cos^2A/2=(3b)/2, then find the relation between the sides of the triangle.

In triangle ABC, if cos^(2)A + cos^(2)B - cos^(2) C = 1 , then identify the type of the triangle

Show that the points A (1,1,1), B (1,2,3) and C (2,-1,1) are vertices of an isosceles triangle.

Let a,b,c be the sides of a triangle ABC, a=2c,cos(A-C)+cos B=1. then the value of C is

In DeltaABC , if sin A + sin B + sin C= 1 + sqrt2 and cos A+cos B+cosC =sqrt2 then the triangle is