Home
Class 11
MATHS
By geometrical interpretation, prove tha...

By geometrical interpretation, prove that
(i) `sin(alpha+beta)=sin alpha cos beta+sinbeta cosalpha`
(ii) `cos(alpha+beta)=cosalpha cosbeta -sin alpha sinbeta`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha

Prove that |cosalpha-cosbeta|lt=|alpha-beta|

If sin^(4)alpha+cos^(4)beta+2=4 sin alpha cos beta, 0 le alpha, (pi)/(2) , then (sin alpha+cos beta) is equal to

IF tan alpha = ( sin alpha - cos alpha )/( sin alpha + cos alpha) , then sin alpha + cos alpha is

If "cot"(alpha+beta)=0, then "sin"(alpha+2beta) can be (a) -sinalpha (b) sinbeta (c) cosalpha (d) cosbeta

If cos alpha + cos beta =0 = sin alpha + sin beta , then cos 2 alpha + cos 2 beta is equal to

If f(alpha,beta)=|(cos alpha,-sin alpha,1),(sin alpha,cos alpha,1),(cos(alpha+beta),-sin(alpha+beta),1)|, then

If ( cos x - cos alpha)/(cos x - cos beta) = ( sin^2 alpha cos beta)/(sin^2 beta cos alpha) then cos x =

If sinalpha-sinbeta=1/3andcosbeta-cosalpha=1/2, show that cot(alpha+beta)/2=2/3