Home
Class 11
MATHS
Let f(x)=cos(a1+x)+1/2cos(a2+x)+1/(2^2)c...

Let `f(x)=cos(a_1+x)+1/2cos(a_2+x)+1/(2^2)cos(a_1+x)++1/(2^(n-1))cos(a_n+x)` where `a)1,a_2 a_n in Rdot` If `f(x_1)=f(x_2)=0,t h e n|x_2-x_1|` may be equal to `pi` (b) `2pi` (c) `3pi` (d) `pi/2`

A

`pi`

B

`2pi`

C

`3pi`

D

`pi//2`

Text Solution

Verified by Experts

`f(x)=(cos a_(1)+(cos a_(2))/2+...+(cos a_(n))/2^(n-1))cos x-((sin a_(1))1+(sin a_(2))/2+...+(sin a_(n))/2^(n-1)) sin x`
`rArr f(x)=A cos x-B sin x`
Now `f(x_(1))=f(x_(2))=0`
`rArr {:(A cos x_(1)- B sin x_(1)=0),(A cos x_(2)-B sin x_(2)=0):}}`
`rArr tan x_(1) = tan x_(2)`
`rArr x_(1)=n pi +x_(2) rArr x_(1)-x_(2)=n pi`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(2cosx-1)(2cos2x-1)(2cos2^2x-1).... (2cos2^(n-1) x-1), (where ngeq1)dot Then prove that f((2pik)/(2^n+-1))=1AAk in Idot

sin (n +1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos x

If x_1=2tan^(-1)((1+x)/(1-x)),x_2=sin^(-1)((1-x^2)/(1+x^2)) , where x in (0,1), then x_1+x_2 is equal to 0 (b) 2pi (c) pi (d) none of these

The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x in (pi/2,pi) , is equal to (a) pi/2 (b) -pi (c) pi (d) -pi/2

cos ((3pi )/( 2 ) + x) cos (2pi + x) [cot ((3pi)/( 2)- x ) + cot (2pi +x) ]=1

The range of f(x)=cos^(-1)((1+x^2)/(2x))+sqrt(2-x^2) is (a) {0,1+pi/2} (b) {0,1+pi) (c) {1,1+pi/2} (d) {1,1+pi}

If f(x) = (1 - cos x)/(1+ cos x) " then " f (pi/2) = ............ .

If f(x) = (1 - cos x)/(1+ cos x) " then " f (pi/2) = ............ .

Let f(x)=lim_(nrarroo) (tan^(-1)(tanx))/(1+(log_(x)x)^(n)),x ne(2n+1)(pi)/(2) then

If sin^(-1)x+sin^(-1)y=(2pi)/(3)",then"cos^(-1)x+cos^(-1)y is equal to