Home
Class 11
MATHS
The least value of 2sin^2theta+3cos^2the...

The least value of `2sin^2theta+3cos^2theta` is 1 (b) 2 (c) 3 (d) 5

Promotional Banner

Similar Questions

Explore conceptually related problems

The greatest value of sin^4theta+cos^4thetai s 1/2 (b) 1 (c) 2 (d) 3

The least value of 18 sin^(2)theta+2 cosec^(2)theta-3 is

Solve 3sin^2 theta -cos^2 theta=0

Solve 7cos^2theta+3sin^2theta=4

If tan^(-1)(sin^2theta-2sintheta+3)+cot^(-1)(5sin^(2theta)+1)=pi/2, then value of 2cos^2theta-sintheta is equal to 0 (b) -1 (c) 1 (d) none of these

If (costheta+cos2theta)^3=cos^3theta+cos^3 2theta, then the least positive value of theta is equal to pi/6 (b) pi/4 (c) pi/3 (d) pi/2

If sin^2theta_1+sin^2theta_2+sin^2theta_3=0, then which of the following is not the possible value of costheta_1+costheta_2+costheta_3? (a) 3 (b) -3 (c) -1 (d) -2

The greatest value of (2sin theta+3cos theta+4)^(3).(6-2sin theta-3cos theta)^(2) , as theta in R , is

Solve 3 cos^(2) theta=sin^(2) theta