Home
Class 11
MATHS
Prove that (b+c)cosA+(c+a)cosB+(a+b)cosC...

Prove that `(b+c)cosA+(c+a)cosB+(a+b)cosC=2sdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that (b+c)cosA +(c+a)cosB +(a+b)cosC =a+b+c

Prove that 2/(b+c)+2/(c+a)+2/(a+b) 0.

Prove that cosA+cosB+cosC=1+r/R

In any /_\ A B C , prove that (b^2-c^2)cotA+(c^2-a^2)cotB+(c^a-b^2)cotC=0

Prove that (cos C + cos A)/(c + a) + (cos B)/(b) = (1)/(b)

Prove that cosA -cosB -cosC =1-4sin(A/2)cos(B/2)cos(C/2) ,if A+B+C= pi

In A B C , prove that cosA+cosB+cosClt=3/2dot

In a triangleABC, prove that a cos A+b cos B+c cos C=2a sin B sin C

Prove that ("a c o s"A+b cosB+ccosC)/(a+b+c)=r/Rdot