Home
Class 11
MATHS
Prove that cosalpha+cosbeta+cosgamma+cos...

Prove that `cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : cos^2 (beta-gamma) + cos^2 (gamma-alpha) + cos^2 (alpha-beta) =1+2cos (beta-gamma) cos (gamma-alpha) cos (alpha-beta) .

If alpha,beta,gamma are the angles of a triangle and system of equations cos(alpha-beta)x+cos(beta-gamma)y+cos(gamma-alpha)z=0 cos(alpha+beta)x+cos(beta+gamma)y+cos(gamma+alpha)z=0 sin(alpha+beta)x+sin(beta+gamma)y+sin(gamma+alpha)z=0 has non-trivial solutions, then triangle is necessarily a. equilateral b. isosceles c. right angled "" d. acute angled

Prove that (cos alpha+cos beta)^(2)+(sin alpha -sin beta)^(2)=4 cos^(2) ((alpha+beta)/(2))

Prove that |cosalpha-cosbeta|lt=|alpha-beta|

Let A and B denote the statements A : cos alpha + cos beta + cos gamma =0 B : sin alpha + siin beta + sin gamma = 0 If cos(beta - gamma) + cos (gamma -alpha) + cos (alpha -beta) = - (3)/(2) , then

If cosalpha+cosbeta+cosgamma=0a n da l sosinalpha+sinbeta+singamma=0, then prove that cos2alpha+cos2beta+cos2gamma =sin2alpha+sin2beta+sin2gamma=0 sin3alpha+sin3beta+sin3gamma=3sin(alpha+beta+gamma) cos3alpha+cos3beta+cos3gamma=3cos(alpha+beta+gamma)

Prove that sum_(alpha+beta+gamma = 10) (10 !)/(alpha!beta!gamma!)=3^(10)dot

If alpha, beta, gamma are three real numbers and A=[(1,cos (alpha-beta),cos(alpha-gamma)),(cos (beta-alpha),1,cos (beta-gamma)),(cos (gamma-alpha),cos (gamma-beta),1)] then which of following is/are true ?

Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha

If alpha,beta "and" gamma are real number without expanding at any stage prove that |{:(1,cos(beta-alpha),cos(gamma-alpha)),(cos(alpha-beta),1,cos(gamma-beta)),(cos(alpha-gamma),cos(beta-gamma),1):}| =0.