Home
Class 11
MATHS
Number of roots of cos^2x+(sqrt(3)+1)/2s...

Number of roots of `cos^2x+(sqrt(3)+1)/2sinx-(sqrt(3))/4-1=0` which lie in the interval `[-pi,pi]` is 2 (b) 4 (c) 6 (d) 8

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of solutions of the equation cos^(2)((pi)/(3)cos x - (8pi)/(3))=1 in the interval [0,10pi] is

The number of solutions of the equation cos6x+tan^2x+cos(6x)tan^2x=1 in the interval [0,2pi] is (a) 4 (b) 5 (c) 6 (d) 7

The number of distinct real roots of |sinxcosxcosxcosxsinxcosxcosxcosxsinx|=0 in the interval -pi/4lt=xlt=pi/4 is 0 (b) 2 (c) 1 (d) 3

The value of f(x)=3cos(sqrt ((pi^2)/(16)-x^2)) lie in the interval____

One of the root equation cosx-x+1/2=0 lies in the interval (a) (0,pi/2) (b) (-pi/(2,0)) (c) (pi/2,pi) (d) (pi,(3pi)/2)

The least value of a for which the equation 4/(sinx)+1/(1-sinx)=a has at least one solution in the interval (0,pi/2) (a) 9 (b) 4 (c) 8 (d) 1

The value of c in Lagranges theorem for the function f(x)=logsinx in the interval [pi/6,(5pi)/6] is (a) pi/4 (b) pi/2 (c) (2pi)/3 (d) none of these

The variable x satisfying the equation |sinxcosx|+sqrt(2+tan^2 x+cot^2x)=sqrt(3) belongs to the interval (a) [0,pi/3] (b) (pi/3,pi/3) (c) [(3pi)/4,pi] (d) none-existent

The greatest value of the function f(x)=(sin2x)/(sin(x+pi/4)) on the interval (0,pi/2)i s 1/(sqrt(2)) (b) sqrt(2) (c) 1 (d) -sqrt(2)

The number of solutions of the equation |2 sin x-sqrt(3)|^(2 cos^(2) x-3 cos x+1)=1 in [0, pi] is