Home
Class 11
MATHS
If A B C ,sinC+cosC+sin(2B+C)-cos(2B+C)...

If ` A B C ,sinC+cosC+sin(2B+C)-cos(2B+C)=2sqrt(2.)` Prove that ` A B C` is right-angled isosceles.

Promotional Banner

Similar Questions

Explore conceptually related problems

In triangle ABC if 2sin^(2)C=2+cos2A+cos2B , then prove that triangle is right angled.

If sinA=sin^2Ba n d2cos^2A=3cos^2B then the triangle A B C is right angled (b) obtuse angled (c)isosceles (d) equilateral

If in a triangle A B C , (2cosA)/a+(cos B)/b+(2cosC)/c=a/(b c)+b/(c a) , then prove that the triangle is right angled.

Column I (condition) Column II (Type of A B C) cotA/2=(b+c)/a p. always right angled atanA+btanB=(a+b)tan((A+B)/2) q. always isosceles acosA-bcosB r. may be right angled cosA=(sinB)/(2sinC) s. may be right angled isosceles

In any triangle. if(a^2-b^2)/(a^2+b^2)=("sin"(A-B))/("sin"(A+B)) , then prove that the triangle is either right angled or isosceles.

In DeltaABC , if sin A + sin B + sin C= 1 + sqrt2 and cos A+cos B+cosC =sqrt2 then the triangle is

Prove that cosA -cosB -cosC =1-4sin(A/2)cos(B/2)cos(C/2) ,if A+B+C= pi

In a triangle ABC, if sin A sin(B-C)=sinC sin(A-B) , then prove that cos 2A,cos2B and cos 2C are in AP.

Prove that in a A B C ,sin^2A+sin^2B+sin^2C<=9/4dot