Home
Class 11
MATHS
Prove that sum(r=1)^n(1/(costheta+"cos"...

Prove that `sum_(r=1)^n(1/(costheta+"cos"(2r+1)theta))=(sinntheta)/(2sintheta* costheta*cos (n+1)theta),(w h e r e n in N)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

(sintheta+sin2theta)/(1+costheta+cos2theta)

Prove that (1-costheta +cos2theta )/(sin2theta -sintheta)=cottheta

Prove that (sintheta +sin2theta)/(1+costheta +cos2theta)=tantheta

Prove that ((1+sin theta- cos theta)/(1+sin theta+costheta))^2=(1-cos theta)/(1+cos theta)

If sintheta +costheta =1 then sin^6 theta +cos^6 theta is:

Prove that sintheta+sin3theta+sin5theta+.....+sin(2n-1)theta=(sin^2ntheta)/(sintheta)dot

Prove that (1+costheta+isintheta)^(n)+(1+costheta-isintheta)^(n)=2^(n+1)cos^(n)((theta)/(2))cos((ntheta)/(2))

Prove that: (costheta)/(1+sintheta)=tan(pi/4-theta/2)

Prove the following: (sec theta + tan theta)(1-sintheta) = costheta

If cos e ctheta-sintheta=ma n dsectheta-costheta=n ,"eliminate"theta