Home
Class 11
MATHS
Column I (condition) Column II (Type o...

Column I (condition) Column II (Type of ` A B C)` `cotA/2=(b+c)/a` p. always right angled `atanA+btanB=(a+b)tan((A+B)/2)` q. always isosceles `acosA-bcosB` r. may be right angled `cosA=(sinB)/(2sinC)` s. may be right angled isosceles

Promotional Banner

Similar Questions

Explore conceptually related problems

If A B C ,sinC+cosC+sin(2B+C)-cos(2B+C)=2sqrt(2.) Prove that A B C is right-angled isosceles.

In triangle ABC , if cosA+sinA-(2)/(cosB+sinB)=0 then prove that triangle is isosceles right angled.

In a DeltaABC, if C is a right angle, then tan^(-1)((a)/(b+c))+tan^(-1)((b)/(c+a))=

ABC is an isosceles triangle right angled at C. Prove that AB^(2) = 2AC^(2) .

If sinA=sin^2Ba n d2cos^2A=3cos^2B then the triangle A B C is right angled (b) obtuse angled (c)isosceles (d) equilateral

In any triangle. if(a^2-b^2)/(a^2+b^2)=("sin"(A-B))/("sin"(A+B)) , then prove that the triangle is either right angled or isosceles.

In a right triangle ABC, right angled at B, if tan A=1, then verify that 2sinAcosA=1.

In triangle ABC if 2sin^(2)C=2+cos2A+cos2B , then prove that triangle is right angled.

If A , B and C are interior angles of a triangle ABC, then show that tan ((A+B) /(2)) =cot ©/(2)

If cos^2A+cos^2B+cos^2C=1,t h e n A B C is (a)equilateral (b) isosceles (c)right angles (d) none of these