Home
Class 11
MATHS
Given b=2,c=sqrt(3),/A=30^0 , then inrad...

Given `b=2,c=sqrt(3),/_A=30^0` , then inradius of ` A B C` is `(sqrt(3)-1)/2` (b) `(sqrt(3)+1)/2` (c) `(sqrt(3)-1)/4` (d) `non eoft h e s e`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of cot70^0+4cos70^0 is (a) 1/(sqrt(3)) (b) sqrt(3) (c) 2sqrt(3) (d) 1/2

If y=|cosx|+|sinx|,t h e n(dy)/(dx)a tx=(2pi)/3 is (1-sqrt(3))/2 (b) 0 (c) 1/2(sqrt(3)-1) (d) none of these

In A B C , the coordinates of B are (0,0),A B=2,/_A B C=pi/3, and the middle point of B C has coordinates (2,0)dot The centroid o the triangle is (a) (1/2,(sqrt(3))/2) (b) (5/3,1/(sqrt(3))) (c) (4+(sqrt(3))/3,1/3) (d) none of these

Values (s)(-i)^(1/3) is/are (sqrt(3)-i)/2 b. (sqrt(3)+i)/2 c. (-sqrt(3)-i)/2 d. (-sqrt(3)+i)/2

The value of ("lim")_(xto2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)i s (a) 1/(8sqrt(3)) (b) 1/(4sqrt(3)) (c) 0 (d) none of these

If tan^(-1)(a+x)/a+tan^(-1)(a-x)/a=pi/6,t h e nx^2= (a) 2sqrt(3)a (b) sqrt(3)a (c) 2sqrt(3)a^2 (d) none of these

If A(1,p^2),B(0,1) and C(p ,0) are the coordinates of three points, then the value of p for which the area of triangle A B C is the minimum is 1/(sqrt(3)) (b) -1/(sqrt(3)) 1/(sqrt(2)) (d) none of these

If cos28^0+sin28^0=k^3, t h e ncos17^0 is equal to (a) (k^3)/(sqrt(2)) (b) -(k^3)/(sqrt(2)) (c) +-(k^3)/(sqrt(2)) (d) none of these

If tan^(-1)x+2cot^(-1)x=(2pi)/3, then x , is equal to (a) (sqrt(3)-1)/(sqrt(3)+1) (b) 3 (c) sqrt(3) (d) sqrt(2)

If the vertices of a triangle are (sqrt(5,)0) , ( sqrt(3),sqrt(2)) , and (2,1) , then the orthocentre of the triangle is (sqrt(5),0) (b) (0,0) (c) (sqrt(5)+sqrt(3)+2,sqrt(2)+1) (d) none of these