Home
Class 11
MATHS
The smallest positive x satisfying the e...

The smallest positive `x` satisfying the equation `(log)_(cosx)sinx+(log)_(sinx)cosx=2` is `pi/2` (b) `pi/3` (c) `pi/4` (d) `pi/6`

Promotional Banner

Similar Questions

Explore conceptually related problems

The smallest positive value of x (in radians) satisfying the equation (log)_(cosx)((sqrt(3))/2sinx)=2-(log)_(secx)(tanx) is (a) pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

The values of x_1 between 0 and 2pi , satisfying the equation cos3x+cos2x=sin(3x)/2+sinx/2 are pi/7 (b) (5pi)/7 (c) (9pi)/7 (d) (13pi)/7

If y={(log)_(cosx)sinx}{(log)_(sinx)cosx}^(-1)+sin^(-1)((2x)/(1+x^2)), fin d (dy)/(dx)a tx=pi/4

If Aa n dB are acute positive angles satisfying the equations 3sin^2A+2sin^2B=1 and 3sin2A-2sin2B=0, then A+2B is equal to (a) pi (b) pi/2 (c) pi/4 (d) pi/6

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

int_0^pi(xtanx)/(secx+cosx)dxi s (pi^2)/4 (b) (pi^2)/2 (c) (3pi^2)/2 (d) (pi^2)/3

The length of the longest interval in which the function 3sinx-4sin^3x is increasing is pi/3 (b) pi/2 (c) (3pi)/2 (d) pi

(lim)_(xvecoo)x^2sin((log)_esqrt(cospi/x)) a. 0 b. (pi^2)/2 c. (pi^2)/4 d. (pi^2)/8

The number of solution of the equation |2sinx-sqrt(3)|^(2cos^2 x-3cosx+1)=1in[0,pi] is 2 (b) 3 (c) 4 (d) 5

Number of solution of the equation cos^4 2x+2sin^2 2x=17(cosx+sinx)^8,0