Home
Class 11
MATHS
The variable x satisfying the equation |...

The variable `x` satisfying the equation `|sinxcosx|+sqrt(2+tan^2 x+cot^2x)=sqrt(3)` belongs to the interval `(a) [0,pi/3]` (b) `(pi/3,pi/3)` (c) `[(3pi)/4,pi]` (d) none-existent

A

`[0,pi/3]`

B

`(pi/3pi/2)`

C

`[(3pi)/4,pi)`

D

None of these

Text Solution

Verified by Experts

`abs(sinxcosx)+abs(tanx+cotx)=sqrt3`
`or abs(sinxcosx)+1/abs(sinxcosx)=sqrt3`
But `abs(sinxcosx)+1/(abs(sinxcosx))ge2`
hence, no solution.
Promotional Banner

Similar Questions

Explore conceptually related problems

Number of roots of the equation |sinxcosx| +sqrt(2+t a n^2x+cot^2x)=sqrt(3),x in [0,4pi]a r e

One of the root equation cosx-x+1/2=0 lies in the interval (a) (0,pi/2) (b) (-pi/(2,0)) (c) (pi/2,pi) (d) (pi,(3pi)/2)

The number of distinct real roots of the equation sin^(3)x +sin^(2)x sin x-sin x- sin 2x-2cos x=0 belonging to the interval (-(pi)/(2),(pi)/(2))

The least positive solution of cot(pi/(3sqrt3) sin2x)=sqrt3 lie (a) (0,pi/6] (b) (pi/9,pi/6) (c) (pi/12,pi/9) (d) (pi/3,pi/2)

The smallest positive value of x (in radians) satisfying the equation (log)_(cosx)((sqrt(3))/2sinx)=2-(log)_(secx)(tanx) is (a) pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

The value of c in Lagranges theorem for the function f(x)=logsinx in the interval [pi/6,(5pi)/6] is (a) pi/4 (b) pi/2 (c) (2pi)/3 (d) none of these

The domain of the function f(x)=(log)_e{(log)_(|sinx|)(x^2-8x+23)-{3/((log)_2|sinx|)}} contains which of the following interval(s)? (a) (3,pi) (b) (pi,(3pi)/2) (c) ((3pi)/2,5) (d) none of these

If a , b in [0,2pi] and the equation x^2+4+3sin(a x+b)-2x=0 has at least one solution, then the value of (a+b) can be (a) (7pi)/2 (b) (5pi)/2 (c) (9pi)/2 (d) none of these

Range of tan^(-1)((2x)/(1+x^2)) is (a) [-pi/4,pi/4] (b) (-pi/2,pi/2) (c) (-pi/2,pi/4) (d) [pi/4,pi/2]

The range of the function tan^(-1)((x^2+1)/(x^2+sqrt(3))),x in R is a. [pi/6,pi/2) b. [pi/6,pi/3) c. [pi/6,pi/4] d. none of these