Home
Class 11
MATHS
Prove that sin (A+B) sin (A-B)=cos^(2) B...

Prove that `sin (A+B) sin (A-B)=cos^(2) B-cos^(2) A`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin ( A + B) sin (A - B) = sin^(2) A - sin^(2)B .

Prove that cos (A + B) cos (A - B) = cos^(2) B - sin^(2) A

Prove that cos (A + B) cos (A - B) = cos^(2) A - sin^(2) B = cos^(2) B- sin^(2) A

Prove that (sin (A-B))/(sin (A+B))=(a^(2)-b^(2))/(c^(2))

Prove that sin (A+B)= sin A cos B + cos A sin B.

Prove that sin^2 A cos^2 B+cos^2 A sin^2 B+cos^2 A cos^2 B+sin^2 A sin^2 B=1

Prove that (sin (4A - 2B) + sin (4B - 2A))/(cos (4A - 2B) + cos (4B - 2A)) = tan (A + B)

If any quadrilateral ABCD, prove that "sin"(A+B)+sin(C+D)=0 "cos"(A+B)=cos(C+D)

If A + B + C = 180^(@) , prove that sin A + sin B + sin C = 4 cos (A)/(2) cos"" (B)/(2) cos"" (C )/(2)

If A + B + C = 180^(@) , prove that sin^(2)A + sin^(2)B - sin^(2)C = 2 sin A sin B cos C