Home
Class 11
MATHS
alphaa n dbeta are the positive acute an...

`alphaa n dbeta` are the positive acute angles and satisfying equation `5sin2beta=3sin2alpha and tanbeta=3tanalpha` simultaneously. Then the value of `tanalpha+tanbeta` is _________

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2 sin 2alpha=tan beta,alpha,beta, in((pi)/(2),pi) , then the value of alpha+beta is

sin alpha+sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) the value of sin(alpha+beta)

Suppose that for some angles xa n dy , the equations sin^2x+cos^2y=(3a)/2a n dcos^2x+sin^2y=(a^2)/2 hold simultaneously. the possible value of a is ___________

If theta and phi are acute angles satisfying sin theta=1/2, cos phi=1/3 then theta+phi=

(1+tanalphatanbeta)^2+(tanalpha-tanbeta)^2=

If sin theta = 3 sin ( theta + 2 alpha) , then the value of tan (theta + alpha ) + 2 tan alpha is

If tanalpha=m/(m+1) and tanbeta=1/(2m+1) . Find the possible values of (alpha+beta)

If alpha and beta are acute such that alpha+beta and alpha-beta satisfy the equation tan^(2)theta-4tan theta+1=0 , then (alpha, beta ) =

Let alpha , beta be two real numbers satisfying the following relations alpha^(2)+beta^(2)=5 , 3(alpha^(5)+beta^(5))=11(alpha^(3)+beta^(3)) Possible value of alpha + beta is