Home
Class 11
MATHS
e^(|sinx|)+e^(-|sinx|)+4a=0 will have ex...

`e^(|sinx|)+e^(-|sinx|)+4a=0` will have exactly four different solutions in `[0,2pi]` if. `a in R` (b) `a in [-3/4,-1/4]` `a in [(-1-e^2)/(4e),oo]` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^2x-2sinx-1=0 has exactly four different solutions in x in [0,npi] , then value/values of n is/are (n in N) 5 (b) 3 (c) 4 (d) 6

lim_(xto0)(e^(sinx)-1)/x=

The value of int_0^1e^(x^2-x)dx is (a) 1 (c) > e^(-1/4) (d) none of these

The function x^x decreases in the interval (0,e) (b) (0,1) (0,1/e) (d) none of these

The number of solution of 2cosx=|sinx| where x in [0.4pi] is/are

If both the distinct roots of the equation |sinx|^2+|sinx|+b=0in[0,pi] are real, then the values of b are [-2,0] (b) (-2,0) [-2,0] (d) non eoft h e s e

The number of solution of equation sin^(-1)x+nsin^(-1)(1-x)=(mpi)/2,w h e r e n >0,m<=0, is 3 (b) 1 (c) 2 (d) None of these

If y=cos^(-1)((5cosx-12sinx)/(13)),w h e r ex in (0,pi/2), then (dy)/(dx) is. (a)1 (b) -1 (c) 0 (d) none of these

int_(0)^(pi/2)e^(-x) sinx dx is

The value of lim_(m->oo)(cos(x/m))^("m") is 1 (b) e (c) e^(-1) (d) none of these