Home
Class 11
MATHS
Let f(n)=2cosn xAAn in N , then f(1)f(...

Let `f(n)=2cosn xAAn in N ,` then `f(1)f(n+1)-f(n)` is equal to (a)`f(n+3)` (b) `f(n+2)` (c)`f(n+1)f(2)` (d) `f(n+2)f(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(n)=1+1/2+1/3++1/ndot Then f(1)+f(2)+f(3)++f(n) is equal to (a) nf(n)-1 (b) (n+1)f(n)-n (c) (n+1)f(n)+n (d) nf(n)+n

Let f(n)=sum_(k=1)^(n) k^2(n C_k)^ 2 then the value of f(5) equals

If f(x)=lim_(n->oo)n(x^(1/n)-1),t h e nforx >0,y >0,f(x y) is equal to : (a) f(x)f(y) (b) f(x)+f(y) (c) f(x)-f(y) (d) none of these

f_n(x)=e^(f_(n-1)(x)) for all n in Na n df_0(x)=x ,t h e n d/(dx){f_n(x)} is (a) (f_n(x)d)/(dx){f_(n-1)(x)} (b) f_n(x)f_(n-1)(x) (c) f_n(x)f_(n-1)(x).......f_2(x)dotf_1(x) (d)none of these

f(x) is a continuous function for all real values of x and satisfies int_n^(n+1)f(x)dx=(n^2)/2AAn in Idot Then int_(-3)^5f(|x|)dx is equal to (19)/2 (b) (35)/2 (c) (17)/2 (d) none of these

The equation of the curve is y=f(x)dot The tangents at [1,f(1),[2,f(2)],a n d[3,f(3)] make angles pi/6,pi/3,a n dpi/4, respectively, with the positive direction of x-axis. Then the value of int_2^3f^(prime)(x)f^(x)dx+int_1^3f^(x)dx is equal to (a) -1/(sqrt(3)) (b) 1/(sqrt(3)) (c) 0 (d) none of these

Let f(x)=x^2-2x ,x in R ,a n dg(x)=f(f(x)-1)+f(5-f(x))dot Show that g(x)geq0AAx in Rdot

If f(x+1)+f(x-1)=2f(x)a n df(0),=0, then f(n),n in N , is nf(1) (b) {f(1)}^n (c) 0 (d) none of these

If f and g are two functions defined on N , such that f(n)= {{:(2n-1if n is even), (2n+2 if n is odd):} and g(n)=f(n)+f(n+1) Then range of g is (A) {m in N : m= multiple of 4 } (B) { set of even natural numbers } (C) {m in N : m=4k+3,k is a natural number (D) {m in N : m= multiple of 3 or multiple of 4 }

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))