Home
Class 11
MATHS
In A B C , the median A D divides /B A ...

In ` A B C ,` the median `A D` divides `/_B A C` such that `/_B A D :/_C A D=2:1` . Then `cos(A/3)` is equal to `(sinB)/(2sinC)` (b) `(sinC)/(2sinB)` `(2sinB)/(sinC)` (d) `non eoft h e s e`

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle ABC prove that (a^(2)sin(B-C))/(sinA)+(b^(2)sin(C-A))/(sinB)+(c^(2)sin(A-B))/(sinC)=0

Show that (1+sinA)/(cosA)+(cosB)/(1-sinB)=(2sinA-2sinB)/(sin(A-B)+cosA-cosB)

For any acute angled triangleABC,(sinA)/(A)+(sinB)/(B)+(sinC)/(C ) can

Prove that (a^2sin(B-C))/(sinb+sinC)+(b^2"sin"(C-A))/(sinC+sinA)+(c^2"sin"(A-B))/(sinA+sinB)=0

In triangle A B C ,(sinA+sinB+sinC)/(sinA+sinB-sinC) is equal to

If A+B+C=pi , prove that : (cosA)/(sinb sinC) + (cosB)/(sinC sin) + (cosC)/(sinA sinB) =2 .

If I is the incenter of a triangle ABC, then the ratio I A : I B : I C is equal to a) cos e c A/2: cos e c B/2: cos e c C/2 b) sinA/2:sinB/2:sinC/2 c) secA/2:secB/2:secC/2 d) none of these

Given b=2,c=sqrt(3),/_A=30^0 , then inradius of A B C is (sqrt(3)-1)/2 (b) (sqrt(3)+1)/2 (c) (sqrt(3)-1)/4 (d) non eoft h e s e

In triangle A B C , Medians A D and C E are drawn. If A D=5,/_D A C=pi/8,a n d/_A C E=pi/4 , then the area of the triangle A B C is equal to (25)/9 (b) (25)/3 (c) (25)/(18) (d) (10)/3

If a, b, c, d are in G.P., then (a + b + c + d)^(2) is equal to