Home
Class 11
MATHS
Let f(x)=a bsinx+bsqrt(1-a^2)cosx+c , wh...

Let `f(x)=a bsinx+bsqrt(1-a^2)cosx+c ,` where `|a|<<1,b>>0` then (a) c-b,c+b (b) difference of maximum and minimum values of `f(x)` is `2b` (c) `f(x)=c` if x=`-cos^(-1)a` (d)`f(x)=c` if x=`cos^(-1)a`

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=|a x-b|+c|x|AAx in (-oo,oo), where a >0, b >0,c > 0. Find the condition if f(x) attains the minimum value only at one point.

Let f(x)={(|x|,for 0 (a) a local maximum (b) no local maximum (c) a local minimum (d) no extremum

If int f(x) sinx cosx dx=(1)/(2(b^(2)-a^(2))) "In " f(x)+c," then " f(x) is equal to

Let f(x)={-x^2,for x x^2+8,for x geq 0 the x intercept of the line, that is, the tangent to the graph of f(x) , is zero (b) -1 (c) -2 (d) -4

Let f(x)=cospix+10x+3x^2+x^3,-2lt=xlt=3. The absolute minimum value of f(x) is 0 (b) -15 (c) 3-2pi none of these

If f(x)={(sin(2x^2)/a+cos((3x)/b))^a b//x^2,x!=0e^3, x=0 is continuous at x=0AAb in R then minimum value of a is -1//8 b. -1//4 c. -1//2 d. 0

The function f(x)=sin^(-1)(cosx) is (a) discontinuous at x=0 (b) continuous at x=0 (c) differentiable at x=0 (d) none of these

Let f(x)=(1+b^2)x^2+2b x+1 and let m(b) the minimum value of f(x) as b varies, the range of m(b) is (A) [0,1] (B) (0,1/2] (C) [1/2,1] (D) (0,1]

The number of values of x where the function f(x)=cosx+cos(sqrt(2)x) attains its maximum is 0 (b) 1 (c) 2 (d) infinite

If int((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-(1)/(f(x)) where f(x) is of the form of ax^(2)+bx+c , then the value of f(1) is