Home
Class 11
MATHS
Find the values of theta in the interval...

Find the values of `theta` in the interval `(-pi/2,pi/2)` satisfying the equation `(1-tantheta)(1+tantheta)sec^2theta+2^tan^(2theta)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of values of theta in the interval (-pi/2,pi/2) satisfying the equation (sqrt(3))^(sec^2theta)=tan^4theta+2tan^2theta is

Find the value of theta if tantheta=0.0720

tantheta=? tan(90-theta)=?

If tantheta=1 , then tan(90- theta )=?

Prove that: 1/(sectheta - tantheta) = sectheta + tan theta

The number of values of theta in the interval [-pi/2,pi/2] and theta!=(npi)/5 is where n=0,+-1,+-2 and tantheta=cot(5theta) and sin(2theta)=cos(4theta) is

The value of theta lying between theta=0a n dtheta=pi/2 and satisfying the equation |1+sin^2thetacos^2theta4sin4thetasin^2theta1+cos^2theta4sin4thetasin^2thetacos^2theta1+4sin4theta|=0a r e (7pi)/(24) (b) (5pi)/(24) (c) (11pi)/(24) (d) pi/(24)

tanthetacosec^(2)theta-tantheta is equal to

tanthetacosec^(2)theta-tantheta is equal to