Home
Class 11
MATHS
Let alt=blt=c be the lengths of the sid...

Let `alt=blt=c` be the lengths of the sides of a triangle. If `a^2+b^2 < c^2,` then prove that triangle is obtuse angled .

Promotional Banner

Similar Questions

Explore conceptually related problems

In triangle ABC if 2sin^(2)C=2+cos2A+cos2B , then prove that triangle is right angled.

If a,b,c are sides of a triangle and a^(2) + b^(2) = c^(2) , name the type of triangle.

IF the lengths of the side of triangle are 3,5A N D7, then the largest angle of the triangle is pi/2 (b) (5pi)/6 (c) (2pi)/3 (d) (3pi)/4

Let a,b,c be the sides of a triangle ABC, a=2c,cos(A-C)+cos B=1. then the value of C is

If in a triangle ABC, (bc)/(2 cos A) = b^(2) + c^(2) - 2bc cos A then prove that the triangle must be isosceless

If the sines of the angles A and B of a triangle ABC satisfy the equation c^2x^2-c(a+b)x+a b=0 , then the triangle a)acute angled b)right angled c)obtuse angled d) sinA+cosA = ((a+b))/c

If one side of a triangle is double the other, and the angles on opposite sides differ by 60^0, then the triangle is equilateral (b) obtuse angled (c) right angled (d) acute angled

Let D be the middle point of the side B C of a triangle A B Cdot If the triangle A D C is equilateral, then a^2: b^2: c^2 is equal to 1:4:3 (b) 4:1:3 (c) 4:3:1 (d) 3:4:1

If in triangle A B C ,Delta =a^2-(b-c)^2 , then find the value of tan(A/2).

Let A(0,beta), B(-2,0) and C(1,1) be the vertices of a triangle. Then Angle A of the triangle ABC will be obtuse if beta lies in