Home
Class 11
MATHS
The sum of all roots of sin(pi(log)3(1/x...

The sum of all roots of `sin(pi(log)_3(1/x))=0` in `(0,2pi)` is `3/2` (b) 4 (c) `9/2` (d) `(13)/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of roots of the equation (log)_(3sqrt("x"))x+(log)_(3x)sqrt(x)=0 is 1 (b) 2 (c) 3 (d) 0

The number of roots of the equation xsinx=1,x in [-2pi,0)uu(0,2pi] is 2 (b) 3 (c) 4 (d) 0

The number of roots of (1-tantheta)(1+sin2theta)=1+tanthetafortheta in [0,2pi] is 3 (b) 4 (c) 5 (d) none of these

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))xx (cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))/(cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is

The number of roots of the equation sin(2x+pi/18) cos(2x-pi/9)=-1/4 in [0, 2pi] is

The principal value of sin^(-1)(sin((2pi)/3)) is (a) -(2pi)/3 (b) (2pi)/3 (c) (pi)/3 (d) (5pi)/3 (e) none of these

Sum of roots of the equation x^4-2x^2sin^2(pix/2)+1=0 is 0 (b) 2 (c) 1 (d) 3

The number of solutions of tanx-m x=0,m >1, in (-pi/2,pi/2) is (A) 1 (B) 2 (C) 3 (D) m

The sum of all the solution in [0,4pi] of the equation tanx+cotx+1=cos(x+pi/4)i s (a) 3pi (b) pi/2 (c) (7pi)/2 (d) 4pi