Home
Class 11
MATHS
Let A D be a median of the A B Cdot I...

Let `A D` be a median of the ` A B Cdot` If `A Ea n dA F` are medians of the triangle `A B Da n dA D C` , respectively, and `A D=m_1,A E=m_2,A F=m_3,` then`(a^2)/8` is equal to (a)`m_2^2+m_3^2-2m_1^2` (b) `m_1^2+m_2^2-2m_3^2` (c)`m_1^2+m_3^2-2m_2^2` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(m-1)^ntan^(-1)((2m)/(m^4+m^2+2)) is equal to (a) tan^(-1)((n^2+n)/(n^2+n+2)) (b) tan^(-1)((n^2-n)/(n^2-n+2)) (c) tan^(-1)((n^2+n+2)/(n^2+n)) (d) none of these

If the roots of the equation x^2+2a x+b=0 are real and distinct and they differ by at most 2m ,then b lies in the interval a. (a^2,a^2+m^2) b. (a^2-m^2, a^2) c. [a^2-m^2, a) d. none of these

If y+3=m_1(x+2) and y+3=m_2(x+2) are two tangents to the parabola y^2=8x , then

Show that the area of the triangle formed by the lines y = m_(1) x + c_(1) , y = m_(2) x + c_(2) " and " x = 0 " is " ((c_(1) - c_(2))^(2))/(2|m_(1) - m_(2)|)

Let T_r a n dS_r be the rth term and sum up to rth term of a series, respectively. If for an odd number n ,S_n=na n dT_n=(T_n-1)/(n^2),t h e nT_m ( m being even)is a. 2/(1+m^2) b. (2m^2)/(1+m^2) c. ((m+1)^2)/(2+(m+1)^2) d. (2(m+1)^2)/(1+(m+1)^2)

Two sides of a triangle are parallel to the coordinate axes. If the slopes of the medians through the acute angles of the triangle are 2 and m , the m= 1/2 (b) 2 (c) 4 (d) 8

Given A=|a b 2c d e 2f l m 2n|,B=|f 2d e 2n 4l 2m c 2a b| , then the value of B//A is ___________.

The value of determinant |1 1 1^m C_1^(m+1)C_1^(m+2)C_1^m C_2^(m+1)C_2^(m+2)C_2| is equal to 1 b. -1 c. 0 d. none of these

If y=a e^(m x)+b e^(-m x), then (d^(2y))/(dx^2)-m^2y is equal to m^2(a e^(m x)-b e^(-m x)) 1 (c) 0 (d) none of these

If tan theta+sin theta=m and tan theta-sin theta=n , then m^2-n^2is .... (a)4m n (b) m^2+n^2=4m n (c)m^2-n^2=m^2+n^2 (d) m^2-n^2=4sqrt(m n)