Home
Class 11
MATHS
If sin^2x-2sinx-1=0 has exactly four dif...

If `sin^2x-2sinx-1=0` has exactly four different solutions in `x in [0,npi]` , then value/values of `n` is/are `(n in N)` 5 (b) 3 (c) 4 (d) 6

Promotional Banner

Similar Questions

Explore conceptually related problems

If the equation x^(2)+12+3sin(a+bx)+6x=0 has atleast one real solution, where a, b in [0,2pi] , then the value of a - 3b is (n in Z)

e^(|sinx|)+e^(-|sinx|)+4a=0 will have exactly four different solutions in [0,2pi] if. a in R (b) a in [-3/4,-1/4] a in [(-1-e^2)/(4e),oo] (d) none of these

If 2tan^2x-5secx=1 for exactly seven distinct value of x in [0,(npi)/2],n in N then find the greatest value of ndot

Let f(x)=x+2|x+1|+2|x-1|dot If f(x)=k has exactly one real solution, then the value of k is (a) 3 (b) 0 (c) 1 (d) 2

If cot^(-1)((n^2-10 n+21. 6)/pi)>pi/6, where x y<0 then the possible values of n is (a)3 (b) 2 (c) 4 (d) 8

If 2tan^2x-5secx=1 is satisfied by exactly seven distinct values of x in [0,((2n+1)pi)/2],n in N , then the greatest value of n is________.

Number of solution(s) satisfying the equation 1/(sinx)-1/(sin2x)=2/(sin4x) in [0,4pi] equals 0 (b) 2 (c) 4 (d) 6

If x=1a n dx=2 are solutions of equations x^3+a x^2+b x+c=0a n da+b=1, then find the value of bdot

Let (1+x^2)^2(1+x)^n=sum_(k=0)^(n+4)a_k x^kdotIfa_1,a_2a n d a_3 are in arithmetic progression, then the possible value/values of n is/are a. 5 b. 4 c. 3 d. 2

The number of values of x in the in interval [0,5pi] satisfying the equation 3sin^2x-7sinx+2=0 is 0 (b) 5 (c) 6 (d) 10