Home
Class 11
MATHS
If cot^(2)x=cot(x-y)*cot(x-z), then cot2...

If `cot^(2)x=cot(x-y)*cot(x-z)`, then `cot2x` is equal to `(x!= pm pi/4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1)x + cot^(-1) (1/2) = pi/2 then x is equal to

lim_(xto0) (xcot(4x))/(sin^2x cot^2(2x)) is equal to

If sin^(-1)x+cot^(-1)((1)/(2))=(pi)/(2), then x is equalt to

cot^(2) x + tan^(2) x

If x , y , z are natural numbers such that cot^(-1)x+cot^(-1)y=cot^(-1)z then the number of ordered triplets (x , y , z) that satisfy the equation is (a)0 (b) 1 (c) 2 (d) Infinite solutions

The value of 2tan^(-1)(cos e ctan^(-1)x-tancot^(-1)x) is equal to (a) cot^(-1)x (b) cot^(-1)1/x (c) tan^(-1)x (d) none of these

int e^(tan^-1x)(1+x+x^2) d(cot^-1x) is equal to

lim_(xto0) (x^(4)(cot^(4)x-cot^(2)x+1))/((tan^(4)x-tan^(2)x+1)) is equal to

cot((pi)/(4)-2cot^(-1)3)