Home
Class 11
MATHS
Suppose sin^3xsin3x=sum(m=0)^n Cmcosm x...

Suppose `sin^3xsin3x=sum_(m=0)^n C_mcosm x` is an identity in `x ,` where `C_0,C_1 ,C_n` are constants and `C_n!=0,` the the value of `n` is ________

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^3xsin2x=sum_(r=0)^n a_xsin(r x),AAx in R then

Find the sum sum_(r=0)^n^(n+r)C_r .

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^ s C_r=3^n-1.

Find the sum 3^n C_0-8^n C_1+13^n C_2 - 18^n C_3+..

If f(x)={(1-cos(1-cos x/2))/(2^m x^n)1x=0,x!=0 and f(0)=1 is continuous at x=0 then the value of m+n is a. 2 b. 3 c. -3 d. 7

Prove that sum_(r=0)^n^n C_rsinr xcos(n-r)x=2^(n-1)sin(n x)dot

If x^2+3x+5=0a n da x^2+b x+c=0 have common root/roots and a ,b ,c in N , then find the minimum value of a+b+c

If sin^2x-2sinx-1=0 has exactly four different solutions in x in [0,npi] , then value/values of n is/are (n in N) 5 (b) 3 (c) 4 (d) 6

If the sum of n terms of an A.P is cn (n-1)where c ne 0 then the sum of the squares of these terms is

If (1+x)^n=sum_(r=0)^n^n C_r , show that C_0+(C_1)/2++(C_n)/(n+1)=(2^(n+1)-1)/(n+1) .