Home
Class 11
MATHS
Solve the equation tan^4x+tan^4y+2cot^2x...

Solve the equation `tan^4x+tan^4y+2cot^2xcot^2y=3+sin^2(x+y)` for the values of `xa n dydot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation tan^(-1)2x+tan^(-1)3x=pi/4

Solve the equation 2sinx+cosy=2 for the value of xa n dydot

If f(x , y) satisfies the equation 1+4x-x^2=sqrt(9sec^2y+4cos e c^2y) then find the value of xa n dtan^2ydot

The system of equations tan x=a cot x, tan 2x=b cos y

Solve 3tan2x-4tan3x=tan^2 3xtan2xdot

If sin^(-1)(x^2-4x+5)+cos^(-1)(y^2-2y+2)=pi/2 then find the value of xa n dydot

For the equation 1-2x-x^2=tan^2(x+y)+cot^2(x+y) (a)exactly one value of x exists (b)exactly two values of x exists (c) y=-1+npi+pi/4,n in Z (d) y=1+npi+pi/4, n in Z

Suppose x and y real number such that tan x tan y=42 and cot x +cot =49 the value of tan (x+y) is ____________

Solve the differential equation (tan^(-1)y - x)dy = ( 1 + y^(2))dx .