Home
Class 11
MATHS
Prove that in triangle A B C ,cos^2A+cos...

Prove that in triangle `A B C ,cos^2A+cos^2B-cos^2C=1-2sinAsinBcosCdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that in triangle ABC, 2cos A cosB cos Cle(1)/(8) .

cos^2 A + cos^2 B +cos^2 C=1+2cosA cosB cosC .

Prove that sin (A+B) sin (A-B)=cos^(2) B-cos^(2) A

If A + B + C = (pi)/(2) , prove that cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B cos C

If A+B+C=pi prove that cos^(2) A+cos^(2) B+cos^(2) C=1 - 2cos A cos B cos C .

In triangle ABC, if cos^(2)A + cos^(2)B - cos^(2) C = 1 , then identify the type of the triangle

Prove that sin^2 A cos^2 B+cos^2 A sin^2 B+cos^2 A cos^2 B+sin^2 A sin^2 B=1

If A + B + C = 180^(@) , prove that sin^(2)A + sin^(2)B - sin^(2)C = 2 sin A sin B cos C