Home
Class 11
MATHS
In triangle ABC, prove that sin(B+C-A)+...

In triangle ABC, prove that `sin(B+C-A)+sin(C+A-B)+sin(A+B-C)=4sin Asin Bsin Cdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A + B + C = 180^(@) , prove that sin(B + C - A) + sin (C + A - B) + sin(A + B + C) = 4 sin A sin B sin C.

In any triangle ABC, prove that sin^3Acos(B-C)+sin^3Bcos(C-A)+sin^3Ccos(A-B)=3sinAsinBsinC

In a triangle ABC, prove that b^(2) sin 2C+c^(2) sin 2B=2bc sin A .

If A + B + C = 2s, then prove that sin (s - A) sin (s - B) + sin s. sin (s - C) = sin A sin B .

In a triangleABC, prove that a cos A+b cos B+c cos C=2a sin B sin C

Prove that sin ( A + B) sin (A - B) = sin^(2) A - sin^(2)B .

If A + B + C = 180^(@) , prove that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C

In a triangleABC, " prove that "(sin B)/(sin C)=(c-a cos B)/(b-a cos C)

In triangle A B C , prove that sin(A/2)+sin(B/2)+sin(C/2)lt=3/2dot Hence, deduce that cos((pi+A)/4)cos((pi+B)/4)cos((pi+C)/4)lt=1/8

In any triangle ABC prove that (a^(2)sin(B-C))/(sinA)+(b^(2)sin(C-A))/(sinB)+(c^(2)sin(A-B))/(sinC)=0