Home
Class 11
MATHS
If pi < x < 2pi, prove that (sqrt(...

If `pi < x < 2pi,` prove that `(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))="cot(x/2+pi/4)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in (0,pi/4)

Find int sqrt((1+cosx)/(1-cosx))dx

Find int(cosx)/(sqrt(1+sinx))dx

Draw the graph of y=f(x)=sqrt(1-cosx)

Integrate the functions (cosx)/(sqrt(1+sinx))

int sqrt(1+cosx) dx equals

lim_(xto0)(sqrt(1+x^(2))-1)/(1-cosx)=

y = tan^(-1)sqrt((1-cosx)/(1+cosx)) dy/dx is:

Evaluate lim_(xto0) (sqrt(2)-sqrt(1+cosx))/(sin^(2)x).

If (1)/(sqrt2) lt x lt 1 , then prove that cos^(-1) x + cos^(-1) ((x + sqrt(1 - x^(2)))/(sqrt2)) = (pi)/(4)