Home
Class 11
MATHS
If 0ltalphaltpi/2 and sinalpha+cosbeta+t...

If `0ltalphaltpi/2` and `sinalpha+cosbeta+tanalpha+cotalpha+secalpha+cosecalpha="7,` then prove that `sin2alpha` is a root of the equation `x^2-44x+36=0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^4alpha+cos^4beta+2=4sinalphacosbeta,0lt=alpha,betalt=pi/2 then find the value of (sinalpha+cosbeta)dot

(sinalpha+cosecalpha)^(2)+(cosalpha-secalpha)^(2)-tan^(2)alpha-cot^(2)alpha=?

If alpha is a root of the equation 4x^2+2x-1=0, then prove that 4alpha^3-3alpha is the other root.

If sinalpha+sinbeta and cosalpha+cosbeta=b , prove that tan(alpha-beta)/2=+-sqrt((4-a^2-b^2)/(a^2+b^2)) .

alpha,beta be the roots of the equation x^2-px+r=0 and alpha/2 , 2beta be the roots of the equation x^2-qx+r=0 then value of r is

If "cot"(alpha+beta)=0, then "sin"(alpha+2beta) can be (a) -sinalpha (b) sinbeta (c) cosalpha (d) cosbeta

If sinalphaandcosalpha are the roots of 25x^(2)+5x-12=0 then the value of sin2alpha is

If x^2+a x+bc=0 a n d x^2+b x+c a=0(a!=b) have a common root, then prove that their other roots satisfy the equation x^2+c x+a b=0.

If sinalpha+sinbeta=a and cosalpha+cosbeta=b , prove that tan((alpha-beta)/2)=+-sqrt((4-a^2-b^2)/(a^2+b^2)) .