Home
Class 11
MATHS
The maximum value of y=1/(sin^6x+cos^6x)...

The maximum value of `y=1/(sin^6x+cos^6x)` is ______

Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of 4 sin^(2) x + 3 cos^(2) x + sin ""(x)/(2) + cos"" (x)/(2) is

Find the maximum value of 4sin^2x+3cos^2x+sin(x/2)+cos(x/2)dot

find the maximum value of f(x) = (sin^(-1) (sin x))^(2) - sin^(-1) (sin x)

The maximum value of 1+sin((pi)/(6)+theta)+2cos((pi)/(3)-theta) for real values of theta is

What is the maximum value of the function sin x + cos x?

The maximum value of cos xsin x+sqrt(sin^(2)x+sin^(2)((pi)/(6))} is

The value of 3(sin^4t+cos^4t-1)/(sin^6t+cos^6t-1) is equal to __________

Evaluate int(sin^(6)x)/(cos^(8)x)dx

The maximum value of the function f(x)=((1+x)^(0. 6))/(1+x^(0. 6)) in the interval [0,1] is 2^(0. 4) (b) 2^(-0. 4) 1 (d) 2^(0. 6)