Home
Class 11
MATHS
If sinA=sinBa n dcosA=cosB , then prove ...

If `sinA=sinBa n dcosA=cosB ,` then prove that `sin(A-B)/2=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sinA=s in Ba n dcosA=cosB , then find the value of A in terms of Bdot

If sinA=sin^2Ba n d2cos^2A=3cos^2B then the triangle A B C is right angled (b) obtuse angled (c)isosceles (d) equilateral

If siny=xsin(a+y) , then prove that (dy)/(dx)=(sin^(2)(a+y))/sina, a ne npi .

In a triangle ABC, if sin A sin(B-C)=sinC sin(A-B) , then prove that cos 2A,cos2B and cos 2C are in AP.

If y= A sin x+ B cos x , then prove that (d^(2)y)/(dx^(2))+y=0 .

If A + B + C = 2s, then prove that sin (s - A) sin (s - B) + sin s. sin (s - C) = sin A sin B .

If tan(A+B)=3 tan A , prove that (a) sin(2A+B)=2sin B

if (x)/(2)=(cosA)/(cosB) then prove that (x tan A+y tan B)/(x+y)=tan""(A+B)/(2)

If the sides a , b and c of A B C are in AdotPdot, prove that 2sin(A/2)sin(C/2)=sin(B/2)