Home
Class 12
MATHS
L e t f(x)=(1-tanx)/(4x-pi),x!=pi/4,x in...

`L e t` `f(x)=(1-tanx)/(4x-pi),x!=pi/4,x in [0,pi/2],` If`f(x)i s` continuous in `[0,pi/4],` then find the value of `f(pi/4)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)={2xtanx-pi/(cosx),x!=pi/2kx=pi/2i scon t inuou sa tx=pi/2, then find the value of kdot

If f(x)=x+sinx , then find the value of int_pi^(2pi)f^(-1)(x)dxdot

f(x)=tanx" at "x=pi/2

If f(x)=(tan(pi/4+(log)_e x))^((log)_x e) is to be made continuous at x=1, then what is the value of f(1)?

Find the range of f(x) = (sinx)/(x)+(x)/(tanx) in (0,(pi)/(2))

If int_(0)^(x)f(x)sint dt=" constant, " 0 lt x lt 2pi and f(pi)=2 , then the value of f(pi//2) is

The area bounded by the graph of y=f(x), f(x) gt0 on [0,a] and x-axis is (a^(2))/(2)+(a)/(2) sin a +(pi)/(2) cos a then find the value of f((pi)/(2)) .

If f(x)=cosxdotcos2xdotcos4xdotcos8xdotcos16 x , then find f^(prime)(pi/4)dot

If f(x)=|x|^(|sinx|), then find f^(prime)(-pi/4)