Home
Class 12
MATHS
Find the number of points of discontinui...

Find the number of points of discontinuity for `f(x)=[6sinx], 0<=x<=pi`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) ={{:(x+2,xlt0),(-x^(2)-2,0le xlt1),( x, xge1):} then the number of points of discontinuity of |f(x)|is

Number of points of discontinuity of f(x)=[sin^(-1)x]-[x] in its domain is equal to (where [.] denotes the greatest integer function) a. 0 b. 1 c. 2 d. 3

Find the points of discontinuity of the function: f(x)=1/(2sinx-1)

Find the point of discontinuity of the function f(x)={:{(sinx,x lt 0),(1-cosx,0 le xle pi),(cosx, x gtpi):}

The number of points of discontinuity of g(x)=f(f(x)) where f(x) is defined as, f(x)={1+x ,0lt=xlt=2 3-x ,2 2

Draw the graph and find the points of discontinuity f(x) = [2cos x] , x in [0, 2pi] . ([.] represents the greatest integer function.)

Find the points of discontinuity of the function: f(x)=[[x]]-[x-1],w h e r e[dot] represents the greatest integer function

Find the number of solutions of sinx=x/(10)

Find the points of discontinuity of the function f, where f(x)={:{(sinx,0lexlepi/4),(cosx,pi/4lt x lt pi/2):}

Find the points of discontinuity of the function f, where f(x)={{:(sinx", "0lexlepi/4),(cosx", "pi/4ltxltpi/2):}