Home
Class 12
MATHS
Find the value of x where f(x)={x ,ifxi ...

Find the value of `x` where `f(x)={x ,ifxi sr a t ion a l1-x ,ifxi si r r a t ion a li scon t inuou sdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Column I: Function, Column II: Type of function f(x)="{"sgnx")"^(sgn)}; x!=0,n is an odd integer, p. odd function f(x)=x/(e^x-1)+x/2+1 , q. even function f(x)={0,ifxi sr a t ion a l1,ifxi si r r a t ion a l , r. neither odd nor even function. f(x)=max{tanx ,cotx} , s. periodic

If the functions f(x)a n dg(x) are defined on R rarr R such that f(x)={0, x in r a t ion a l x ,x in i r r a t ion a l a n dg(x)={O , x in i r r a t ion a l x ,x in r a t ion a l then (f-g)(x)i s (a)one-one and onto (b)neither one-one nor onto (c)one-one but not onto (d)onto but not one-one

Which of the following function is/are periodic? (a)f(x)={1,xi sr a t ion a l0,xi si r r a t ion a l (b)f(x)={x-[x]; 2n

Find the value of f(0) so that the function. f(x)=(sqrt(1+x)-1+x3)/xb e com e scon t inuou sa tx=0

If t is a real number satisfying the equation 2t^3-9t^2+30-a=0, then find the values of the parameter a for which the equation x+1/x=t gives six real and distinct values of x .

For x >0,l e th(x)={1/q ,ifx=p/q0,ifxi si r r a t ion a l where p ,q >0 are relatively prime integers. Then prove that f(x) is continuous for all irrational values of xdot

f: Rvec[-1,oo)a n df(x)=1n([|s in2x|+|cos2x|]) (where [.] is the greatest integer function.) Then, (a) f(x)h a sr a ngZ (b) f(x)i sp e r iod i c function (c) f(x)i sin v e r t i b l ein[0,pi/4] (d) f(x) is into function

If f(x) satisfies the relation f(x+y)=f(x)+f(y) for all x , y in Ra n df(1)=5,t h e n (a) f(x)i sa nod dfu n c t ion (b) f(x) is an even function (c) sum_(n=1)^mf(r)=5^(m+1)C_2 (d) sum_(n=1)^mf(r)=(5m(m+2))/3

Find the vaoue of each of the folllowing polynomials for the indicated value of variables: (i) p(x) = 4x ^(2) - 3x + 7 at x =1 (ii) q (y) = 2y ^(3) - 4y + sqrt11 at y =1 (iii) r (t) = 4t ^(4) + 3t ^(3) -t ^(2) + 6 at t =p, t in R (iv) s (z) = z ^(3) -1 at z =1 (v) p (x) = 3x ^(2) + 5x -7 at x =1 (vii) q (z) = 5z ^(3) - 4z + sqrt2 at z =2

Differentiate a^(x) w.r.t. x, where a is a positive constant.