Home
Class 12
MATHS
Find the number of integers lying in the...

Find the number of integers lying in the interval (0,4) where the function `f(x)=(lim)_(nvecoo)(cos(pix)/2)^(2n)` is discontinuous

Promotional Banner

Similar Questions

Explore conceptually related problems

Discuss the continuity of f(x)=("lim")_(nvecoo)cos^(2n)xdot

Discuss the continuity of f(x)in[0,2],w h e r ef(x)=(lim)_(nvecoo)(s in(pix)/2)^(2n)

Find the intervals of decrease and increase for the function f(x)=cos(pi/x)

Discuss the continuity of f(x)=(lim)_(nvecoo)(x^(2n)-1)/(x^(2n)+1)

Find ("lim")_(nvecoo)(5x+2cosx)/(3x+14) using sandwitch theorem

Find the period of f(x)=sin((pix)/(n !))-cos((pix)/((n+1)!))

Find the points of discontinuity of the function: f(x)=1/(2sinx-1)

Find the points of discontinuity of the function f, where f(x)={:{(sinx,0lexlepi/4),(cosx,pi/4lt x lt pi/2):}

Find the points of discontinuity of the function f, where f(x)={{:(sinx", "0lexlepi/4),(cosx", "pi/4ltxltpi/2):}

Find the points of discontinuity of the function: f(x)=1/(x^4+x^2+1)