Home
Class 12
MATHS
Find the inverse of the function: f(x)={...

Find the inverse of the function: `f(x)={x^3-1, ,x<2 x^2+3,xgeq2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the inverse of the function f: [-1,1] to [-1,1],f(x) =x^(2) xx sgn (x).

Find the inverse of the function: f:[-1,1]rarr[-1,1] defined by f(x)=x|x|

Find the inverse of the function: f:(-oo,1] rarr [1/2,oo],w h e r ef(x)=2^(x(x-2))

If x in[-1,(-1)/(sqrt(2))] , then the inverse of the function f(x)=sin^(-1)(2x sqrt(1-x^(2))) is given by

Find the inverse of the function: f: R rarr (-oo,1)gi v e nb yf(x)=1-2^(-x)

Find the domain of the function: f(x)=(sin^(-1)x)/x

Find the domain of the function: f(x)=sin^(-1)(|x-1|-2)

Find the domain of the function: f(x)=(sin^(-1)(x-3))/(sqrt(9-x^2))

Find the derivative of the function f(x)=2x^(2)+3x-5" at "x=-1 . Also prove that f'(0)+3f'(-1)=0 .