Home
Class 12
MATHS
Solve (x-2)[x]={x}-1, (where [x]a n d{x...

Solve `(x-2)[x]={x}-1,` (where `[x]a n d{x}` denote the greatest integer function less than or equal to `x` and the fractional part function, respectively).

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve 2[x]=x+{x},w h r e[]a n d{} denote the greatest integer function and the fractional part function, respectively.

Solve x^2-4-[x]=0 (where [] denotes the greatest integer function).

Solve : 4{x}= x+ [x] (where [*] denotes the greatest integer function and {*} denotes the fractional part function.

In the question, [x]a n d{x} represent the greatest integer function and the fractional part function, respectively. Solve: [x]^2-5[x]+6=0.

Evaluate int_(-1)^(1)(x+[x])dx ,where [.] denotes the greatest integer function.

Evaluate int_(-1)^(3)(x-[x])dx ,where [.] denotes the greatest integer function.

Evaluate int_(-1)^(3)(x+[x])dx ,where [.] denotes the greatest integer function.

Evaluate int_(2)^(5) (x-[x])dx , where [.] denotes the greatest integer function.

Evaluate int_(-1)^(1) (x-[x])dx , where [.] denotes the greatest integer function.

Evaluate int_(2)^(5)(x+[x])dx ,where [.] denotes the greatest integer function.