Home
Class 12
MATHS
If f(x) is a polynomial function satisfy...

If `f(x)` is a polynomial function satisfying `f(x)dotf(1/x)=f(x)+f(1/x)` and `f(4)=65 ,t h e nfin df(6)dot`

Text Solution

Verified by Experts

Polynomial function satisfying
`f(x)*f((1)/(x))=f(x) +f((1)/(x))`
is `f(x)= +-x^(n)+1`
` :. f(4)= +-4^(n)+1=65`
or `4^(n)+1=65`
or `4^(n)=64`
or `n=3`
So, `f(x)=x^(3)=1.`
Hence, `f(6)=6^(3)+1=217`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is a polynomial satisfying f(x)f(1/x)=f(x)+f(1/x)a n df(3)=28 ,t h e nf(4) is equal to 63 (b) 65 (c) 17 (d) none of these

If f is polynomial function satisfying 2+f(x)f(y)=f(x)+f(y)+f(x y)AAx , y in R and if f(2)=5, then find the value of f(f(2))dot

If f is polynomial function satisfying 2+f(x)f(y)=f(x)+f(y)+f(x y)AAx , y in R and if f(2)=5, then find the value of f(f(2))dot

If f: R^+rarrR^+ is a polynomial function satisfying the functional equation f(f(x))=6x-f(x),t h e nf(17) is equal to 17 (b) 51 (c) 34 (d) -34

If f: R^+vecR ,f(x)+3xf(1/x)=2(x+1),t h e nfin df(x)dot

Let f: R^+ ->R be a function which satisfies f(x)dotf(y)=f(x y)+2(1/x+1/y+1) for x , y > 0. Then find f(x)dot

Suppose f is a real function satisfying f(x+f(x))=4f(x)a n df(1)=4. Then the value of f(21) is 16 21 64 105

If f: RvecR is an odd function such that f(1+x)=1+f(x) and x^2f(1/x)=f(x),x!=0 then find f(x)dot

f(x) is a polynomial function, f: R rarr R, such that f(2x)=f'(x)f''(x). The value of f(3) is

If f(x) is an even function and satisfies the relation x^2dotf(x)-2f(1/x)=g(x),w h e r eg(x) is an odd function, then find the value of f(5)dot