Home
Class 12
MATHS
If the function f:(1,oo)rarr(1,oo) is d...

If the function `f:(1,oo)rarr(1,oo)` is defined by `f(x)=2^(x(x-1)),t h e nf^(-1)(x)` is `(1/2)^(x(x-1))` (b) `1/2(1+sqrt(1+4(log)_2x))` `1/2(1-sqrt(1+(log)_2x)` (d) not defined

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f:R->[-1/2,1/2] defined as f(x)=x/(1+x^2) is

Find the inverse of the function: f:(-oo,1] rarr [1/2,oo],w h e r ef(x)=2^(x(x-2))

If F :[1,oo)vec[2,oo) is given by f(x)=x+1/x ,t h e nf^(-1)(x) equals. (a) (x+sqrt(x^2-4))/2 (b) x/(1+x^2) (c) (x-sqrt(x^2-4))/2 (d) 1+sqrt(x^2-4)

If y=tan^(-1)sqrt((x+1)/(x-1)),t h e n(dy)/(dx)i s (-1)/(2|x|sqrt(x^2-1)) (b) (-1)/(2xsqrt(x^2-1)) 1/(2xsqrt(x^2-1)) (d) none of these

Let f:[-oo,0]->[1,oo) be defined as f(x) = (1+sqrt(-x))-(sqrt(-x) -x) , then

Solve: 1/4x^(log_2sqrt(x))=(2. x^((log)_2x))^(1/4)

f(x)=(x-1)|(x-2)(x-3)|dot Then f decreases in (a) (2-1/(sqrt(3)),2) (b) (2,2+1/(sqrt(3))) (c) (2+1/(sqrt(3)),4) (d) (3,oo)

Solve log_(2)(2sqrt(17-2x))=1 - log_(1//2)(x-1) .

The function f (x) = log (x + sqrt(x^2 +1)) is

Find the domain of f(x)=(log)_(10)(log)_2(log)_(2/pi)(t a n^(-1)x)^(-1)