Home
Class 12
MATHS
Find the domain of f(x)=(log)(10)(log)2(...

Find the domain of `f(x)=(log)_(10)(log)_2(log)_(2/pi)(t a n^(-1)x)^(-1)`

Text Solution

Verified by Experts

We must have
`log_(2)log_(2//pi)(tan^(-1)x)^(-1) gt 0`
or `log_(2//pi)(tan^(-1)x)^(-1) gt 1`
or `0 lt (tan^(-1)x)^(-1) lt (2)/(pi)`
or `(pi)/(2) lt tan^(-1)x lt oo`, which is not possible . Hence, the domain is `phi`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain of f(x)=sin^(-1){(log)_9((x^2)/4)}

Find the domain of function f(x)=(log)_4[(log)_5{(log)_3(18 x-x^2-77}]

Find the domain of f(x)=sqrt((log)_(0. 4)((x-1)/(x+5)))

Find the range of f(x)=(log)_e x-((log)_e x)^2/(|(log)_e x|)

Find the range of f(x)=(log)_([x-1])sinxdot

Find the domain of the function : f(x)=sqrt((log)_(10){((log)_(10)x)/(2(3-(log)_(10)x)}}

Find the domain of f(x)(sqrt((1-sinx)))/((log)_5(1-4x^2) +cos^(-1)(1-{x})dot

Find the domain of the function : f(x)=sin^(-1)((log)_2x)

Find the domain and range of f(x)=cos^(-1)sqrt((log)_([x])((|x|)/x))

Find the domain of the function : f(x)=(log)_((x-4))(x^2-11 x+24)