Home
Class 12
MATHS
If theta is the fundamental period of t...

If `theta` is the fundamental period of the function `f(x) = sin^99 x+sin^99(x+(2pi)/3)+sin^99(x+(4pi)/3)` , then the complex number `z=|z|(cos theta+i sintheta)` lies in the quadrant number.

Promotional Banner

Similar Questions

Explore conceptually related problems

What is the fundamental period of f(x) = (sin x+ sin 3x)/(cos x+ cos 3x)

The fundamental period of the function f(x)=4cos^4((x-pi)/(4pi^2))-2cos((x-pi)/(2pi^2)) is equal to :

Verify that the period of function f(x) =sin^(10)x " is " pi.

If z = 1 - cos theta + i sin theta , then |z| =

The period of the function f( theta ) = 4 + 4 sin ^3 theta -3 sin theta is

If z = (1)/(1 - cos theta - i sin theta), the Re (z)=

If sin^(3) theta+sin theta cos theta+ cos^(3) theta=1 , then theta is equal to (n in Z)

The number of solution of cos 2 theta = sin theta in (0, 2 pi) is

Separate the intervals of monotonocity of the function: f(x)=-sin^3x+3sin^2x+5,x in [-pi/2,pi/2]dot

Differentiate w.r.t.x the function. (sin x- cos x)^( sin x - cos x), (pi)/(4) lt x lt (3pi)/(4) .