Home
Class 12
MATHS
If f(x)=log[(1+x)/(1-x)], then prove tha...

If `f(x)=log[(1+x)/(1-x)],` then prove that `f[(2x)/(1+x^2)]=2f(x)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=(x)/(x+1), [1,2]

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

If f(x)=2x^(2)+3x-5 , then prove that f'(0)+3f'(-1)=0

If f(x)=log_(e)((1-x)/(1+x)),|x| lt 1, " then " f((2x)/(1+x^(2))) is equal to

If f(x)=(log)_e((x^2+e)/(x^2+1)) , then the range of f(x)

If f(x+f(y))=f(x)+yAAx ,y in Ra n df(0)=1, then prove that int_0^2f(2-x)dx=2int_0^1f(x)dxdot

IF f(x) = ( x+2)/(3x-1) , then f(f(x)) is

If f(x)=sin^(-1)x then prove that lim_(x->1/2)f(3x-4x^3)=pi-3lim_(x->1/2)sin^(-1)x

f(x)=(1+x) g(x)=(2x-1) Show that fo(g(x))=go(f(x))

if f(x) = (x-1)/(x+1) the f(2x ) is