Home
Class 12
MATHS
If f(x)=sinx+cosx and g(x)=x^2-1, then ...

If `f(x)=sinx+cosx `and `g(x)=x^2-1`, then `g(f (x)) `is invertible in the domain .

Promotional Banner

Similar Questions

Explore conceptually related problems

if f(x) =ax +b and g(x) = cx +d , then f[g(x) ] - g[f(x) ] is equivalent to

if f(x)= sinx + cosx for 0 < x < pi/2

If f(x) =x^(2) -2,g (x) =2x+ 1 then f^(@) g (x)

If f (x) =x^(m) and g(x) =x^(n) does f^(@) g=g^(@) f?

f(x)=(1+x) g(x)=(2x-1) Show that fo(g(x))=go(f(x))

If int f(x) sinx cosx dx=(1)/(2(b^(2)-a^(2))) "In " f(x)+c," then " f(x) is equal to

Let f(x)={x+1,x >0 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

f( x )={ x+1,x 0 and g(x)={ x 3 x 1 find f(g(x)) and its domain and range

Let f be a differential function such that f(x)=f(2-x) and g(x)=f(1 +x) then (1) g(x) is an odd function (2) g(x) is an even function (3) graph of f(x) is symmetrical about the line x= 1 (4) f'(1)=0