Home
Class 12
MATHS
If f(x)={x-1,xgeq1 2x^2-2,x<1,g(x)={x+1...

If `f(x)={x-1,xgeq1 2x^2-2,x<1,g(x)={x+1,x >0-x^2+1, xlt=0,and `h(x)=|x|`,t h e n("lim")_(xvec0)f(g(h(x)))` is___

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={x-1,xgeq1 2x^2-2,x 0-x^2+1, xlt=0,and h(x)=|x| ,t h e n("lim")_(xvec0)f(g(h(x))) is___

f(x)={x ,xlt=0 1,x=0,then find ("lim")_(xvec0) f(x) if exists x^2,x >0

: If f(x)={x^2+2,xgeq2 1-x ,x 1, 3-x , xlt=0,t h e nt h ev a l u eoflim_(x->1)f(g(x))i s__

Evaluate: ("lim")_(xvec0)(1-cos2x)/(x^2)

Let f(x)={x+1,x >0 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

Evaluate: ("lim")_(xvec0)1/xsin^(-1)((2x)/(1+x^2))

If f(x)={x/(s in x),x >0 2-x ,xlt=0 and g(x)={x+3,x<1x^2-2x-2,1lt=x<2x-5,xgeq2 Then the value of (lim)_(xvec0)g(f(x)) a. is -2 b. is -3 c. is 1 d. does not exist

("lim")_(xvec0)((1+5x^2)/(1+3x^2))^1//x^2=____

If f(x)={(x-|x|)/x ,x!=0 ,x=0,s howt h a t("lim")_(xto0) f(x) does not exist.

Evaluate: ("lim")_(xvec0)(1-cosm x)/(1-cosn x)